A Comprehensive Beginner's Guide to Databricks

Explore Databricks with our beginner's guide, covering basics to advanced topics like machine learning and NLP.

By

Jatin Solanki

Updated on

November 14, 2024

Databricks Guide

Imagine creating an ad campaign without any demographic data about your target audience. Or creating a business plan without any market-related data. Seems impossible, right? For all business decisions, data-driven decision-making is becoming the norm. Every day, data warehouses and analytics tools receive a large amount of data, which is analyzed to gain insights. Companies require effective, reliable, scalable, and user-friendly workspaces for data scientists, data analysts, and data engineers. And here's where Databricks come into the picture. 

In layman's terms, Databricks is a cloud-based platform for data warehousing and machine learning. But that’s not all, it has much more to offer. It takes care of all your data needs. From data storage to analysis to driving insights, Databricks has got your back. In this blog, we are going to break down what Databricks is and what wonders it can do for your company.

What is Databricks? 

Databricks is a cloud-based platform developed by an enterprise software company that facilitates data engineering tools for processing and transforming massive amounts of data in order to create machine learning models.

Databricks is a single, cloud-based platform that takes care of all your data requirements. That means it's also a single platform where your whole team can work collaboratively. Databricks is quick, inexpensive, and automatically scales to huge data sets. It simplifies and merges your data systems for their seamless function. Contrary to traditional data processing, which is time-consuming and complicated to get started with, Databricks can be built on your existing cloud, such as Amazon Web Services (AWS), Microsoft Azure, or Google Cloud. This undoubtedly makes it easier for businesses to manage an immense amount of data, visualize the same, and execute machine-learning algorithms (who knows, you can finally move away from just talking about it and actually creating some cool predictive models!). It improves innovation and development and also comes with better security options.   

Fundamental features of Databricks

Now that you know what Databricks is, let's dive into its features: 

  1. Supports multiple coding languages: Databricks provides a notebook interface for developers that supports multiple coding languages in the same computing environment. To build an algorithm using Python, R, Scala, or SQL, a developer just has to use some special commands like %python, %r, %scala, and %sql, and they are good to go. With this feature, developers can carry out different tasks with different coding languages, whichever works best for them. As an illustration, tasks involving data transformation can be carried out using Spark SQL, predictions can be made using Scala, model performance can be assessed using Python, and data can be visualized using R.
  2. Enhances productivity: It allows users to perform rapid installations of notebooks in production, thus boosting their productivity. Thanks to Databricks, data scientists, data analysts, and data engineers can all work together in a collaborative workspace. This collaborative environment encourages employees to come up with innovative ideas. It enables team members to make frequent adjustments while hastening the development process. With its built-in version control tool, Databricks tracks recent modifications and makes it easier to locate recent changes. Hence, saving time and efforts 
  3. Connecting with multiple data sources: Because Databricks connects to multiple data sources, the data analytics possibilities are endless. Databricks links to on-premises SQL servers, CSV servers, and JSON servers in addition to cloud storage services offered by AWS, Azure, or Google Cloud. MongoDB, Avro files, and many other types of files are also connected to the platform.

What is the purpose of Databricks? 

Companies receive tons of data each day. To process this data that comes in scheduled batches or real-time streams, many companies are using a complicated combination of data lakes and data warehouses, with parallel “pipelines”. Furthermore, it is layered on top of various tools for data science and analysis. It seems sluggish, doesn't it? With Databricks, you don't need any of that. Databricks is your one-stop solution for all your data requirements. 


Databricks can:

  • Keep all your data in one place
  • Seamlessly handle both batch and real-time data.
  • Organize data
  • Transform the data 
  • Analyze data collected
  • Utilize the data for the purpose of machine learning and AI
  • Generate reports to show insights 

Databricks can be used for the tasks mentioned above, or they can be combined with other technologies in your cloud data system.

Be it small businesses or large MNCs, Databricks is for all. It can be employed by the entire data team, including data scientists, data analysts, data engineers, business intelligence practitioners, and machine learning engineers. We think that’s a win for us busy bee data teams!

How to get started with Databricks?

Now let us understand how you can get started with Databricks to satisfy all your data requirements:

  • Step 1: Go to the Google Cloud Platform Marketplace and search for Databricks. Sign up for a free trial of Databricks. 
  • Step 2: Once you sign up for a trial subscription, you will get a link from the "Databricks" menu item in the Google Cloud Platform. You can manage setup on the Databricks-hosted account management page using this link.
  • Step 3: The next step is to create a workspace. It’s an environment in Databricks through which you can access your assets. For this, an external Databricks Web application is required. 
  • Step 4: To construct a workspace, you'll need three nodes in a Kubernetes cluster in your Google Cloud Platform project, and you'll use GKE to host the Databricks Runtime, which serves as your data plane. This distinction is necessary because your data always resides in your cloud account in the data plane and in your own data sources, not in the control plane, allowing you to keep control and ownership of your data. 
  • Step 5: After this step, create a table in Delta Lake. For this, you can upload a file, connect to supported data sources, or use a partner integration.
  • Step 6: Create a "cluster" to analyze your data. A Databricks Cluster is a blend of computation resources and configurations on which you can run jobs and notebooks. Streaming Analytics, ETL Pipelines, Machine Learning, and Ad-hoc analytics are a few tasks that you can run on the Databrick Cluster. 
  • Step 7: The cluster runtime in these Databricks is dependent on Apache Spark. The majority of Databricks' tools are built using open-source frameworks and libraries like MLflow and Delta Lake.

What are the benefits of using Databricks? 

  • Databricks gives an integrated Data Analytics Platform for data engineers, data scientists, data analysts, and business analysts.
  • It’s versatile across different ecosystems – AWS, GCP, and Azure.
  • Databricks ensures data reliability and scalability via delta lake.
  • Frameworks (sci-kit-learn, TensorFlow, Keras), libraries (matplotlib, pandas, NumPy), scripting languages (e.g.R, Python, Scala, or SQL), tools, and IDEs (JupyterLab, RStudio) are all supported by Databricks.
  • Databricks has basic inbuilt visualizations.
  • With the help of HYPEROPT, it’s possible to tune hyperparameters.
  • It is ten times faster than other ETLs.

Final thoughts 

Databricks has a lot of potential when it comes to data-related requirements. It can save time and effort for your data team and boost productivity. Companies require Databricks to analyze their business data stored in multiple data streams. To have a comprehensive view of the data, the data must be imported into the data warehouse.

Now that you are fully aware of what Databricks is, its features and benefits, and know how to get started, I hope nothing is holding you back. Get started today!


Once you have databricks deployed, its time to observe the data where decube is the right partner for that. Signup now!

What is a Data Trust Platform in financial services?
A Data Trust Platform is a unified framework that combines data observability, governance, lineage, and cataloging to ensure financial institutions have accurate, secure, and compliant data. In banking, it enables faster regulatory reporting, safer AI adoption, and new revenue opportunities from data products and APIs.
Why do AI initiatives fail in Latin American banks and fintechs?
Most AI initiatives in LATAM fail due to poor data quality, fragmented architectures, and lack of governance. When AI models are fed stale or incomplete data, predictions become inaccurate and untrustworthy. Establishing a Data Trust Strategy ensures models receive fresh, auditable, and high-quality data, significantly reducing failure rates.
What are the biggest data challenges for financial institutions in LATAM?
Key challenges include: Data silos and fragmentation across legacy and cloud systems. Stale and inconsistent data, leading to poor decision-making. Complex compliance requirements from regulators like CNBV, BCB, and SFC. Security and privacy risks in rapidly digitizing markets. AI adoption bottlenecks due to ungoverned data pipelines.
How can banks and fintechs monetize trusted data?
Once data is governed and AI-ready, institutions can: Reduce OPEX with predictive intelligence. Offer hyper-personalized products like ESG loans or SME financing. Launch data-as-a-product (DaaP) initiatives with anonymized, compliant data. Build API-driven ecosystems with partners and B2B customers.
What is data dictionary example?
A data dictionary is a centralized repository that provides detailed information about the data within an organization. It defines each data element—such as tables, columns, fields, metrics, and relationships—along with its meaning, format, source, and usage rules. Think of it as the “glossary” of your data landscape. By documenting metadata in a structured way, a data dictionary helps ensure consistency, reduces misinterpretation, and improves collaboration between business and technical teams. For example, when multiple teams use the term “customer ID”, the dictionary clarifies exactly how it is defined, where it is stored, and how it should be used. Modern platforms like Decube extend the concept of a data dictionary by connecting it directly with lineage, quality checks, and governance—so it’s not just documentation, but an active part of ensuring data trust across the enterprise.
What is an MCP Server?
An MCP Server stands for Model Context Protocol Server—a lightweight service that securely exposes tools, data, or functionality to AI systems (MCP clients) via a standardized protocol. It enables LLMs and agents to access external resources (like files, tools, or APIs) without custom integration for each one. Think of it as the “USB-C port for AI integrations.”
How does MCP architecture work?
The MCP architecture operates under a client-server model: MCP Host: The AI application (e.g., Claude Desktop or VS Code). MCP Client: Connects the host to the MCP Server. MCP Server: Exposes context or tools (e.g., file browsing, database access). These components communicate over JSON‑RPC (via stdio or HTTP), facilitating discovery, execution, and contextual handoffs.
Why does the MCP Server matter in AI workflows?
MCP simplifies access to data and tools, enabling modular, interoperable, and scalable AI systems. It eliminates repetitive, brittle integrations and accelerates tool interoperability.
How is MCP different from Retrieval-Augmented Generation (RAG)?
Unlike RAG—which retrieves documents for LLM consumption—MCP enables live, interactive tool execution and context exchange between agents and external systems. It’s more dynamic, bidirectional, and context-aware.
What is a data dictionary?
A data dictionary is a centralized repository that provides detailed information about the data within an organization. It defines each data element—such as tables, columns, fields, metrics, and relationships—along with its meaning, format, source, and usage rules. Think of it as the “glossary” of your data landscape. By documenting metadata in a structured way, a data dictionary helps ensure consistency, reduces misinterpretation, and improves collaboration between business and technical teams. For example, when multiple teams use the term “customer ID”, the dictionary clarifies exactly how it is defined, where it is stored, and how it should be used. Modern platforms like Decube extend the concept of a data dictionary by connecting it directly with lineage, quality checks, and governance—so it’s not just documentation, but an active part of ensuring data trust across the enterprise.
What is the purpose of a data dictionary?
The primary purpose of a data dictionary is to help data teams understand and use data assets effectively. It provides a centralized repository of information about the data, including its meaning, origins, usage, and format, which helps in planning, controlling, and evaluating the collection, storage, and use of data.
What are some best practices for data dictionary management?
Best practices for data dictionary management include assigning ownership of the document, involving key stakeholders in defining and documenting terms and definitions, encouraging collaboration and communication among team members, and regularly reviewing and updating the data dictionary to reflect any changes in data elements or relationships.
How does a business glossary differ from a data dictionary?
A business glossary covers business terminology and concepts for an entire organization, ensuring consistency in business terms and definitions. It is a prerequisite for data governance and should be established before building a data dictionary. While a data dictionary focuses on technical metadata and data objects, a business glossary provides a common vocabulary for discussing data.
What is the difference between a data catalog and a data dictionary?
While a data catalog focuses on indexing, inventorying, and classifying data assets across multiple sources, a data dictionary provides specific details about data elements within those assets. Data catalogs often integrate data dictionaries to provide rich context and offer features like data lineage, data observability, and collaboration.
What challenges do organizations face in implementing data governance?
Common challenges include resistance from business teams, lack of clear ownership, siloed systems, and tool fragmentation. Many organizations also struggle to balance strict governance with data democratization. The right approach involves embedding governance into workflows and using platforms that unify governance, observability, and catalog capabilities.
How does data governance impact AI and machine learning projects?
AI and ML rely on high-quality, unbiased, and compliant data. Poorly governed data leads to unreliable predictions and regulatory risks. A governance framework ensures that data feeding AI models is trustworthy, well-documented, and traceable. This increases confidence in AI outputs and makes enterprises audit-ready when regulations apply.
What is data governance and why is it important?
Data governance is the framework of policies, ownership, and controls that ensure data is accurate, secure, and compliant. It assigns accountability to data owners, enforces standards, and ensures consistency across the organization. Strong governance not only reduces compliance risks but also builds trust in data for AI and analytics initiatives.
What is the difference between a data catalog and metadata management?
A data catalog is a user-facing tool that provides a searchable inventory of data assets, enriched with business context such as ownership, lineage, and quality. It’s designed to help users easily discover, understand, and trust data across the organization. Metadata management, on the other hand, is the broader discipline of collecting, storing, and maintaining metadata (technical, business, and operational). It involves defining standards, policies, and processes for metadata to ensure consistency and governance. In short, metadata management is the foundation—it structures and governs metadata—while a data catalog is the application layer that makes this metadata accessible and actionable for business and technical users.
What features should you look for in a modern data catalog?
A strong catalog includes metadata harvesting, search and discovery, lineage visualization, business glossary integration, access controls, and collaboration features like data ratings or comments. More advanced catalogs integrate with observability platforms, enabling teams to not only find data but also understand its quality and reliability.
Why do businesses need a data catalog?
Without a catalog, employees often struggle to find the right datasets or waste time duplicating efforts. A data catalog solves this by centralizing metadata, providing business context, and improving collaboration. It enhances productivity, accelerates analytics projects, reduces compliance risks, and enables data democratization across teams.
What is a data catalog and how does it work?
A data catalog is a centralized inventory that organizes metadata about data assets, making them searchable and easy to understand. It typically extracts metadata automatically from various sources like databases, warehouses, and BI tools. Users can then discover datasets, understand their lineage, and see how they’re used across the organization.
What are the key features of a data observability platform?
Modern platforms include anomaly detection, schema and freshness monitoring, end-to-end lineage visualization, and alerting systems. Some also integrate with business glossaries, support SLA monitoring, and automate root cause analysis. Together, these features provide a holistic view of both technical data pipelines and business data quality.
How is data observability different from data monitoring?
Monitoring typically tracks system metrics (like CPU usage or uptime), whereas observability provides deep visibility into how data behaves across systems. Observability answers not only “is something wrong?” but also “why did it go wrong?” and “how does it impact downstream consumers?” This makes it a foundational practice for building AI-ready, trustworthy data systems.
What are the key pillars of Data Observability?
The five common pillars include: Freshness, Volume, Schema, Lineage, and Quality. Together, they provide a 360° view of how data flows and where issues might occur.
What is Data Observability and why is it important?
Data observability is the practice of continuously monitoring, tracking, and understanding the health of your data systems. It goes beyond simple monitoring by giving visibility into data freshness, schema changes, anomalies, and lineage. This helps organizations quickly detect and resolve issues before they impact analytics or AI models. For enterprises, data observability builds trust in data pipelines, ensuring decisions are made with reliable and accurate information.

Table of Contents

Read other blog articles

Grow with our latest insights

Sneak peek from the data world.

Thank you! Your submission has been received!
Talk to a designer

All in one place

Comprehensive and centralized solution for data governance, and observability.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
decube all in one image