Snowpark Use Case: For Snowflake Users

Explore how Snowpark enhances Snowflake's data engineering with complex transformations using popular programming languages. Revolutionize your data tasks.

By

Jatin Solanki

Updated on

November 14, 2024

Introduction:

Hey fellow data geeks! If you've been working with Snowflake Data Warehouse, I'm pretty sure you've heard of Snowpark. If you haven't, well, it's time to level up your game. Snowpark is a powerful developer experience that enables you to write complex data transformation logic in your favorite programming language, like Python or Scala, and run it directly in Snowflake. In this multi-part article, I'm going to walk you through some challenging yet easy-to-understand use cases and code snippets to show you how to leverage Snowpark for your data engineering needs. So, grab your favorite beverage and let's dive into the world of Snowpark!

Snowpark use case

Snowpark is a powerful developer experience designed to work with Snowflake Data Warehouse. It allows data engineers and developers to write complex data transformation logic using their favorite programming languages, such as Python, Scala, and Java, and run it directly within Snowflake. Snowpark simplifies the process of building, testing, and deploying data pipelines, enabling developers to focus on their business logic rather than managing infrastructure.

Some key features of Snowpark include:

  1. Support for multiple programming languages: Snowpark allows developers to write their data transformation logic in popular languages like Python, Scala, and Java, catering to a wide range of skill sets.
  2. Seamless integration with Snowflake: Snowpark is designed to work natively with Snowflake, enabling developers to use Snowflake features like virtual warehouses, stages, and materialized views.
  3. Powerful data transformation capabilities: Snowpark provides a rich set of functions and operations to perform complex data transformations, such as aggregations, window functions, and user-defined functions, directly within Snowflake.
  4. Improved performance and cost efficiency: By running data transformations within Snowflake, Snowpark eliminates the need for transferring large volumes of data between Snowflake and external processing engines, resulting in reduced data movement, improved performance, and lower costs.

Overall, Snowpark offers a versatile and powerful solution to supercharge your data engineering tasks within the Snowflake Data Warehouse ecosystem.

Part 1: Data Ingestion and Transformation with Snowpark

1.1 Setting up Snowpark and connecting to Snowflake

Let's start by setting up Snowpark and connecting it to your Snowflake instance. For this example, we'll use Python. First, you'll need to install the snowflake-connector-python and snowpark packages:

Now, let's connect to Snowflake:

1.2 Data Ingestion

Let's say we have a CSV file with sales data that we want to ingest into Snowflake. We can use Snowpark to create a table and load the data:

1.3 Data Transformation with Snowpark

Now that we have the sales data in Snowflake, let's use Snowpark to perform some transformations. We'll start by calculating the total revenue per product.

With this code, we've created a new table total_revenue_by_product in Snowflake, which holds the total revenue per product. This example demonstrates how easy it is to perform complex data transformations using Snowpark.

1.4 Advanced Data Transformation: Calculating Rolling Averages

For this example, let's calculate the 7-day rolling average of revenue for each product. We'll be using window functions to achieve this.

Conclusion (Part 1):

In this first part of the article series, we've explored how to set up Snowpark, connect to Snowflake, and perform data ingestion and transformation tasks. We've seen how Snowpark enables us to write complex data transformation logic using Python and run it directly in Snowflake, making the process more efficient and flexible. In the next part of the series, we'll dive deeper into more advanced use cases and discuss how Snowpark can be used to optimize your data engineering workflow even further. So, stay tuned for more geeky data engineering adventures with Snowpark and Snowflake!

Part 2: Advanced Use Cases with Snowpark

2.1 Creating and Using User-Defined Functions (UDFs)

UDFs can be a powerful tool for extending Snowflake's built-in SQL capabilities and adding custom logic to your data transformations. In this example, we'll create a UDF to calculate the price per unit for each sale, and then use it in a Snowpark query.

First, let's create the UDF in Snowflake:

Now that we have the UDF, let's use it in a Snowpark query:

With this example, we've demonstrated how to create a UDF in Snowflake and use it within a Snowpark query to perform custom data transformations.

2.2 Query Optimization with Materialized Views

Materialized views can significantly improve the performance of your queries by precomputing and caching the results. In this example, let's create a materialized view for the total revenue per product, which we calculated in Part 1.

First, create the materialized view in Snowflake:

Now, let's see how to use this materialized view in a Snowpark query:

By using a materialized view, the top_selling_products query runs faster, as it leverages the precomputed and cached results.

Conclusion (Part 2):

In this second part of the series, we've explored advanced use cases of Snowpark, such as working with user-defined functions and optimizing query performance with materialized views. These examples demonstrate the versatility and power of Snowpark when it

External References:
  1. Snowflake Documentation - Snowpark: Official Snowflake documentation on Snowpark, offering an overview, examples, and detailed guidance on using Snowpark with different programming languages:https://docs.snowflake.com/en/developer-guide/snowpark/index.html
  2. Snowflake Documentation - Data Loading: A comprehensive guide on data loading in Snowflake, which includes information on stages, loading data from various sources, and managing data files: https://docs.snowflake.com/en/user-guide/data-load-overview
  3. Snowflake Documentation - Data Transformation with SQL: An extensive guide on using SQL for data transformation in Snowflake, covering topics like aggregate functions, window functions, and more:https://docs.snowflake.com/en/sql-reference/functions.html

What is a Data Trust Platform in financial services?
A Data Trust Platform is a unified framework that combines data observability, governance, lineage, and cataloging to ensure financial institutions have accurate, secure, and compliant data. In banking, it enables faster regulatory reporting, safer AI adoption, and new revenue opportunities from data products and APIs.
Why do AI initiatives fail in Latin American banks and fintechs?
Most AI initiatives in LATAM fail due to poor data quality, fragmented architectures, and lack of governance. When AI models are fed stale or incomplete data, predictions become inaccurate and untrustworthy. Establishing a Data Trust Strategy ensures models receive fresh, auditable, and high-quality data, significantly reducing failure rates.
What are the biggest data challenges for financial institutions in LATAM?
Key challenges include: Data silos and fragmentation across legacy and cloud systems. Stale and inconsistent data, leading to poor decision-making. Complex compliance requirements from regulators like CNBV, BCB, and SFC. Security and privacy risks in rapidly digitizing markets. AI adoption bottlenecks due to ungoverned data pipelines.
How can banks and fintechs monetize trusted data?
Once data is governed and AI-ready, institutions can: Reduce OPEX with predictive intelligence. Offer hyper-personalized products like ESG loans or SME financing. Launch data-as-a-product (DaaP) initiatives with anonymized, compliant data. Build API-driven ecosystems with partners and B2B customers.
What is data dictionary example?
A data dictionary is a centralized repository that provides detailed information about the data within an organization. It defines each data element—such as tables, columns, fields, metrics, and relationships—along with its meaning, format, source, and usage rules. Think of it as the “glossary” of your data landscape. By documenting metadata in a structured way, a data dictionary helps ensure consistency, reduces misinterpretation, and improves collaboration between business and technical teams. For example, when multiple teams use the term “customer ID”, the dictionary clarifies exactly how it is defined, where it is stored, and how it should be used. Modern platforms like Decube extend the concept of a data dictionary by connecting it directly with lineage, quality checks, and governance—so it’s not just documentation, but an active part of ensuring data trust across the enterprise.
What is an MCP Server?
An MCP Server stands for Model Context Protocol Server—a lightweight service that securely exposes tools, data, or functionality to AI systems (MCP clients) via a standardized protocol. It enables LLMs and agents to access external resources (like files, tools, or APIs) without custom integration for each one. Think of it as the “USB-C port for AI integrations.”
How does MCP architecture work?
The MCP architecture operates under a client-server model: MCP Host: The AI application (e.g., Claude Desktop or VS Code). MCP Client: Connects the host to the MCP Server. MCP Server: Exposes context or tools (e.g., file browsing, database access). These components communicate over JSON‑RPC (via stdio or HTTP), facilitating discovery, execution, and contextual handoffs.
Why does the MCP Server matter in AI workflows?
MCP simplifies access to data and tools, enabling modular, interoperable, and scalable AI systems. It eliminates repetitive, brittle integrations and accelerates tool interoperability.
How is MCP different from Retrieval-Augmented Generation (RAG)?
Unlike RAG—which retrieves documents for LLM consumption—MCP enables live, interactive tool execution and context exchange between agents and external systems. It’s more dynamic, bidirectional, and context-aware.
What is a data dictionary?
A data dictionary is a centralized repository that provides detailed information about the data within an organization. It defines each data element—such as tables, columns, fields, metrics, and relationships—along with its meaning, format, source, and usage rules. Think of it as the “glossary” of your data landscape. By documenting metadata in a structured way, a data dictionary helps ensure consistency, reduces misinterpretation, and improves collaboration between business and technical teams. For example, when multiple teams use the term “customer ID”, the dictionary clarifies exactly how it is defined, where it is stored, and how it should be used. Modern platforms like Decube extend the concept of a data dictionary by connecting it directly with lineage, quality checks, and governance—so it’s not just documentation, but an active part of ensuring data trust across the enterprise.
What is the purpose of a data dictionary?
The primary purpose of a data dictionary is to help data teams understand and use data assets effectively. It provides a centralized repository of information about the data, including its meaning, origins, usage, and format, which helps in planning, controlling, and evaluating the collection, storage, and use of data.
What are some best practices for data dictionary management?
Best practices for data dictionary management include assigning ownership of the document, involving key stakeholders in defining and documenting terms and definitions, encouraging collaboration and communication among team members, and regularly reviewing and updating the data dictionary to reflect any changes in data elements or relationships.
How does a business glossary differ from a data dictionary?
A business glossary covers business terminology and concepts for an entire organization, ensuring consistency in business terms and definitions. It is a prerequisite for data governance and should be established before building a data dictionary. While a data dictionary focuses on technical metadata and data objects, a business glossary provides a common vocabulary for discussing data.
What is the difference between a data catalog and a data dictionary?
While a data catalog focuses on indexing, inventorying, and classifying data assets across multiple sources, a data dictionary provides specific details about data elements within those assets. Data catalogs often integrate data dictionaries to provide rich context and offer features like data lineage, data observability, and collaboration.
What challenges do organizations face in implementing data governance?
Common challenges include resistance from business teams, lack of clear ownership, siloed systems, and tool fragmentation. Many organizations also struggle to balance strict governance with data democratization. The right approach involves embedding governance into workflows and using platforms that unify governance, observability, and catalog capabilities.
How does data governance impact AI and machine learning projects?
AI and ML rely on high-quality, unbiased, and compliant data. Poorly governed data leads to unreliable predictions and regulatory risks. A governance framework ensures that data feeding AI models is trustworthy, well-documented, and traceable. This increases confidence in AI outputs and makes enterprises audit-ready when regulations apply.
What is data governance and why is it important?
Data governance is the framework of policies, ownership, and controls that ensure data is accurate, secure, and compliant. It assigns accountability to data owners, enforces standards, and ensures consistency across the organization. Strong governance not only reduces compliance risks but also builds trust in data for AI and analytics initiatives.
What is the difference between a data catalog and metadata management?
A data catalog is a user-facing tool that provides a searchable inventory of data assets, enriched with business context such as ownership, lineage, and quality. It’s designed to help users easily discover, understand, and trust data across the organization. Metadata management, on the other hand, is the broader discipline of collecting, storing, and maintaining metadata (technical, business, and operational). It involves defining standards, policies, and processes for metadata to ensure consistency and governance. In short, metadata management is the foundation—it structures and governs metadata—while a data catalog is the application layer that makes this metadata accessible and actionable for business and technical users.
What features should you look for in a modern data catalog?
A strong catalog includes metadata harvesting, search and discovery, lineage visualization, business glossary integration, access controls, and collaboration features like data ratings or comments. More advanced catalogs integrate with observability platforms, enabling teams to not only find data but also understand its quality and reliability.
Why do businesses need a data catalog?
Without a catalog, employees often struggle to find the right datasets or waste time duplicating efforts. A data catalog solves this by centralizing metadata, providing business context, and improving collaboration. It enhances productivity, accelerates analytics projects, reduces compliance risks, and enables data democratization across teams.
What is a data catalog and how does it work?
A data catalog is a centralized inventory that organizes metadata about data assets, making them searchable and easy to understand. It typically extracts metadata automatically from various sources like databases, warehouses, and BI tools. Users can then discover datasets, understand their lineage, and see how they’re used across the organization.
What are the key features of a data observability platform?
Modern platforms include anomaly detection, schema and freshness monitoring, end-to-end lineage visualization, and alerting systems. Some also integrate with business glossaries, support SLA monitoring, and automate root cause analysis. Together, these features provide a holistic view of both technical data pipelines and business data quality.
How is data observability different from data monitoring?
Monitoring typically tracks system metrics (like CPU usage or uptime), whereas observability provides deep visibility into how data behaves across systems. Observability answers not only “is something wrong?” but also “why did it go wrong?” and “how does it impact downstream consumers?” This makes it a foundational practice for building AI-ready, trustworthy data systems.
What are the key pillars of Data Observability?
The five common pillars include: Freshness, Volume, Schema, Lineage, and Quality. Together, they provide a 360° view of how data flows and where issues might occur.
What is Data Observability and why is it important?
Data observability is the practice of continuously monitoring, tracking, and understanding the health of your data systems. It goes beyond simple monitoring by giving visibility into data freshness, schema changes, anomalies, and lineage. This helps organizations quickly detect and resolve issues before they impact analytics or AI models. For enterprises, data observability builds trust in data pipelines, ensuring decisions are made with reliable and accurate information.

Table of Contents

Read other blog articles

Grow with our latest insights

Sneak peek from the data world.

Thank you! Your submission has been received!
Talk to a designer

All in one place

Comprehensive and centralized solution for data governance, and observability.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
decube all in one image