Importance of Embedding in AI / Generative AI

Discover the transformative role of embeddings in GenAI, revolutionizing data processing for enhanced efficiency and interpretability.

By

Melanie Yong

Updated on

June 15, 2024

As data engineers and members of data teams, we thrive on the technology that serves as the bedrock of our work. However, like any professional in the rapidly evolving field of AI, we must remain inquisitive, adaptable, and ready to absorb the next game-changer into our toolbox. That game-changer is here, and it's known as Embeddings.

A Dive Into Embeddings

Before we deep-dive into this transformative technology, let's first understand what we mean by 'Embeddings'. These are the mathematical representation of complex data types like words, sentences, and objects in a lower-dimensional vector space. Think of embeddings as the 'numeric mask' of the data that's not only more palatable for machine learning algorithms but also retains the semantic relationships among the data.

Analogous to 3D objects represented in 2D space in a way that preserves their spatial relationships, embeddings give our machines the ability to handle and understand unstructured data—like text or images—much more effectively.

Sample of Embedding

To give a sense of how embeddings work, consider a simple word embedding example, like transforming words into vectors using techniques like Word2Vec or GloVe.

Say we have four words: King, Queen, Man, and Woman. An embedding model might map these words into a 2-dimensional space like this:

  • King: [1.5, 2.7]
  • Queen: [1.7, 2.9]
  • Man: [1.0, 1.2]
  • Woman: [1.2, 1.4]

Although the actual numbers would be much more complex in a real-world scenario, the fundamental idea is that the semantic relationships between the words are retained in this vector space. The vectors for 'King' and 'Man' are related in a similar way as the vectors for 'Queen' and 'Woman', maintaining their gender relationships.

Additionally, operations like addition and subtraction have semantic meanings. For instance, if we add the vector for 'Woman' to 'King' and subtract 'Man', we'd end up near the vector for 'Queen'. This means we've effectively encoded the relationship "King - Man + Woman = Queen" into our vector space, demonstrating how powerful embeddings can be.

Why is Embedding Crucial?

The recent years have seen the rise of a new wave in AI, often referred to as GenAI, short for General Artificial Intelligence. Unlike its predecessors, which could handle single, narrowly defined tasks, GenAI aims to develop systems capable of outperforming humans at virtually every economically valuable work. We're talking about machines that can understand, learn, adapt, and implement knowledge across a broad array of tasks.

To achieve this, our machines need to process an ocean of diverse data: texts, images, sounds, transactions, and even emotions. However, traditional databases, built on B-tree and hash indexes, aren't best suited for storing and retrieving this high-dimensional and complex data. They suffer from the 'curse of dimensionality', which makes them inefficient as the data dimension increases. This is where embeddings come in. They represent this complex data in a low-dimensional space, making it easier to handle for databases and AI algorithms.

The Power of Vector Databases

This is where the magic happens. Once data is represented as embeddings, we can store it in a database that excels in handling these low-dimensional vectors, commonly known as a vector database. Vector databases fundamentally differ from traditional databases as they support operations that are natural to vector spaces, like vector similarity search, nearest neighbors, and clustering.

Imagine having to find a document related to 'data privacy' from a library of a million articles. Traditional databases would need an exact match or a boolean query to retrieve it, which could be quite inefficient. However, a vector database, armed with embeddings, can identify semantically similar documents even if they don't contain the exact term 'data privacy'. Impressive, right?

Moreover, vector databases enable faster, scalable, and more flexible data operations, which is paramount for the success of GenAI applications.

Getting Vector Capabilities into Our Existing Database

While the above points might compel you to immediately jump onto the vector database bandwagon, it's not always as simple. Many organizations have legacy systems and large-scale relational or NoSQL databases. Transforming these into a vector database or integrating a standalone vector database might be daunting.

However, recent innovations have made this transition simpler. A new breed of databases, often termed as 'converged databases', has emerged that offer the best of both worlds. They retain the traditional ACID guarantees while also incorporating the vector capabilities needed for GenAI applications.

These databases allow data teams to continue using their existing SQL interfaces while also leveraging vector operations when needed. They can store structured data like customer records alongside embeddings of unstructured data like customer reviews. A SQL query can then fetch these structured and unstructured data simultaneously, enabling a truly holistic analysis. It's like having your cake and eating it too!

Moreover, many of these converged databases support on-the-fly generation of embeddings using built-in functions. This means that you don't need to generate embeddings beforehand and store them in the database, saving significant storage and computational overhead.

The Future is Vector: Embedding and GenAI

Looking forward, the symbiotic relationship between embeddings and GenAI is likely to deepen. As GenAI models continue to grow in complexity, the need for efficient data representation, storage, and retrieval will only escalate.

But it's not just about efficiency. Embeddings hold the key to 'interpretability' in AI, one of the holy grails in the field. While most AI models are seen as 'black boxes', embeddings can give us a sneak peek into what's happening inside. By visualizing these embeddings, we can understand how the model perceives different data points and their relationships. This can be a game-changer in AI applications that demand transparency and explainability.

In parallel, we can also anticipate significant advancements in vector databases. They will likely become more intuitive, intelligent, and integrated with AI development pipelines. We can expect functions like automatic generation of optimal embeddings for a given task and query optimization based on the nature of vector data.

Summing Up

In an era where data is hailed as the 'new oil', its efficient management is more critical than ever. For data engineers and teams, understanding and leveraging the power of embeddings and vector databases is no longer a luxury, but a necessity.

The journey might seem challenging, especially given the entrenched practices and systems in many organizations. But with the promise of increased efficiency, scalability, flexibility, and interpretability, the rewards far outweigh the risks.

As data custodians, it's our responsibility to understand and adapt to these changes. We must strive to continuously upgrade our knowledge and skills to ensure we are delivering the best value to our organizations and the broader society. The era of GenAI is here, and it's time to embed ourselves in this exciting journey of transformation.

After all, in the world of AI, it's often the early adopters who lead the charge into the future. So, let's be those pioneers, and let's shape the future of data engineering with the power of embeddings and vector databases.

Here are some links that might be helpful for you:

  1. OpenAI API
  2. Azure OpenAI
  3. Gartner - Generative AI Use Cases for Industries and Enterprises
  4. OpenAI - Introducing text and code embeddings

What is a Data Trust Platform in financial services?
A Data Trust Platform is a unified framework that combines data observability, governance, lineage, and cataloging to ensure financial institutions have accurate, secure, and compliant data. In banking, it enables faster regulatory reporting, safer AI adoption, and new revenue opportunities from data products and APIs.
Why do AI initiatives fail in Latin American banks and fintechs?
Most AI initiatives in LATAM fail due to poor data quality, fragmented architectures, and lack of governance. When AI models are fed stale or incomplete data, predictions become inaccurate and untrustworthy. Establishing a Data Trust Strategy ensures models receive fresh, auditable, and high-quality data, significantly reducing failure rates.
What are the biggest data challenges for financial institutions in LATAM?
Key challenges include: Data silos and fragmentation across legacy and cloud systems. Stale and inconsistent data, leading to poor decision-making. Complex compliance requirements from regulators like CNBV, BCB, and SFC. Security and privacy risks in rapidly digitizing markets. AI adoption bottlenecks due to ungoverned data pipelines.
How can banks and fintechs monetize trusted data?
Once data is governed and AI-ready, institutions can: Reduce OPEX with predictive intelligence. Offer hyper-personalized products like ESG loans or SME financing. Launch data-as-a-product (DaaP) initiatives with anonymized, compliant data. Build API-driven ecosystems with partners and B2B customers.
What is data dictionary example?
A data dictionary is a centralized repository that provides detailed information about the data within an organization. It defines each data element—such as tables, columns, fields, metrics, and relationships—along with its meaning, format, source, and usage rules. Think of it as the “glossary” of your data landscape. By documenting metadata in a structured way, a data dictionary helps ensure consistency, reduces misinterpretation, and improves collaboration between business and technical teams. For example, when multiple teams use the term “customer ID”, the dictionary clarifies exactly how it is defined, where it is stored, and how it should be used. Modern platforms like Decube extend the concept of a data dictionary by connecting it directly with lineage, quality checks, and governance—so it’s not just documentation, but an active part of ensuring data trust across the enterprise.
What is an MCP Server?
An MCP Server stands for Model Context Protocol Server—a lightweight service that securely exposes tools, data, or functionality to AI systems (MCP clients) via a standardized protocol. It enables LLMs and agents to access external resources (like files, tools, or APIs) without custom integration for each one. Think of it as the “USB-C port for AI integrations.”
How does MCP architecture work?
The MCP architecture operates under a client-server model: MCP Host: The AI application (e.g., Claude Desktop or VS Code). MCP Client: Connects the host to the MCP Server. MCP Server: Exposes context or tools (e.g., file browsing, database access). These components communicate over JSON‑RPC (via stdio or HTTP), facilitating discovery, execution, and contextual handoffs.
Why does the MCP Server matter in AI workflows?
MCP simplifies access to data and tools, enabling modular, interoperable, and scalable AI systems. It eliminates repetitive, brittle integrations and accelerates tool interoperability.
How is MCP different from Retrieval-Augmented Generation (RAG)?
Unlike RAG—which retrieves documents for LLM consumption—MCP enables live, interactive tool execution and context exchange between agents and external systems. It’s more dynamic, bidirectional, and context-aware.
What is a data dictionary?
A data dictionary is a centralized repository that provides detailed information about the data within an organization. It defines each data element—such as tables, columns, fields, metrics, and relationships—along with its meaning, format, source, and usage rules. Think of it as the “glossary” of your data landscape. By documenting metadata in a structured way, a data dictionary helps ensure consistency, reduces misinterpretation, and improves collaboration between business and technical teams. For example, when multiple teams use the term “customer ID”, the dictionary clarifies exactly how it is defined, where it is stored, and how it should be used. Modern platforms like Decube extend the concept of a data dictionary by connecting it directly with lineage, quality checks, and governance—so it’s not just documentation, but an active part of ensuring data trust across the enterprise.
What is the purpose of a data dictionary?
The primary purpose of a data dictionary is to help data teams understand and use data assets effectively. It provides a centralized repository of information about the data, including its meaning, origins, usage, and format, which helps in planning, controlling, and evaluating the collection, storage, and use of data.
What are some best practices for data dictionary management?
Best practices for data dictionary management include assigning ownership of the document, involving key stakeholders in defining and documenting terms and definitions, encouraging collaboration and communication among team members, and regularly reviewing and updating the data dictionary to reflect any changes in data elements or relationships.
How does a business glossary differ from a data dictionary?
A business glossary covers business terminology and concepts for an entire organization, ensuring consistency in business terms and definitions. It is a prerequisite for data governance and should be established before building a data dictionary. While a data dictionary focuses on technical metadata and data objects, a business glossary provides a common vocabulary for discussing data.
What is the difference between a data catalog and a data dictionary?
While a data catalog focuses on indexing, inventorying, and classifying data assets across multiple sources, a data dictionary provides specific details about data elements within those assets. Data catalogs often integrate data dictionaries to provide rich context and offer features like data lineage, data observability, and collaboration.
What challenges do organizations face in implementing data governance?
Common challenges include resistance from business teams, lack of clear ownership, siloed systems, and tool fragmentation. Many organizations also struggle to balance strict governance with data democratization. The right approach involves embedding governance into workflows and using platforms that unify governance, observability, and catalog capabilities.
How does data governance impact AI and machine learning projects?
AI and ML rely on high-quality, unbiased, and compliant data. Poorly governed data leads to unreliable predictions and regulatory risks. A governance framework ensures that data feeding AI models is trustworthy, well-documented, and traceable. This increases confidence in AI outputs and makes enterprises audit-ready when regulations apply.
What is data governance and why is it important?
Data governance is the framework of policies, ownership, and controls that ensure data is accurate, secure, and compliant. It assigns accountability to data owners, enforces standards, and ensures consistency across the organization. Strong governance not only reduces compliance risks but also builds trust in data for AI and analytics initiatives.
What is the difference between a data catalog and metadata management?
A data catalog is a user-facing tool that provides a searchable inventory of data assets, enriched with business context such as ownership, lineage, and quality. It’s designed to help users easily discover, understand, and trust data across the organization. Metadata management, on the other hand, is the broader discipline of collecting, storing, and maintaining metadata (technical, business, and operational). It involves defining standards, policies, and processes for metadata to ensure consistency and governance. In short, metadata management is the foundation—it structures and governs metadata—while a data catalog is the application layer that makes this metadata accessible and actionable for business and technical users.
What features should you look for in a modern data catalog?
A strong catalog includes metadata harvesting, search and discovery, lineage visualization, business glossary integration, access controls, and collaboration features like data ratings or comments. More advanced catalogs integrate with observability platforms, enabling teams to not only find data but also understand its quality and reliability.
Why do businesses need a data catalog?
Without a catalog, employees often struggle to find the right datasets or waste time duplicating efforts. A data catalog solves this by centralizing metadata, providing business context, and improving collaboration. It enhances productivity, accelerates analytics projects, reduces compliance risks, and enables data democratization across teams.
What is a data catalog and how does it work?
A data catalog is a centralized inventory that organizes metadata about data assets, making them searchable and easy to understand. It typically extracts metadata automatically from various sources like databases, warehouses, and BI tools. Users can then discover datasets, understand their lineage, and see how they’re used across the organization.
What are the key features of a data observability platform?
Modern platforms include anomaly detection, schema and freshness monitoring, end-to-end lineage visualization, and alerting systems. Some also integrate with business glossaries, support SLA monitoring, and automate root cause analysis. Together, these features provide a holistic view of both technical data pipelines and business data quality.
How is data observability different from data monitoring?
Monitoring typically tracks system metrics (like CPU usage or uptime), whereas observability provides deep visibility into how data behaves across systems. Observability answers not only “is something wrong?” but also “why did it go wrong?” and “how does it impact downstream consumers?” This makes it a foundational practice for building AI-ready, trustworthy data systems.
What are the key pillars of Data Observability?
The five common pillars include: Freshness, Volume, Schema, Lineage, and Quality. Together, they provide a 360° view of how data flows and where issues might occur.
What is Data Observability and why is it important?
Data observability is the practice of continuously monitoring, tracking, and understanding the health of your data systems. It goes beyond simple monitoring by giving visibility into data freshness, schema changes, anomalies, and lineage. This helps organizations quickly detect and resolve issues before they impact analytics or AI models. For enterprises, data observability builds trust in data pipelines, ensuring decisions are made with reliable and accurate information.

Table of Contents

Read other blog articles

Grow with our latest insights

Sneak peek from the data world.

Thank you! Your submission has been received!
Talk to a designer

All in one place

Comprehensive and centralized solution for data governance, and observability.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
decube all in one image